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Abstract—Feature selection aims to select an optimal minimal
feature subset from the original datasets and has become an
indispensable preprocessing component before data mining and
machine learning, especially in the era of big data. Most feature
selection methods implicitly assume that we can know the feature
type (categorical, numerical, or mixed) before learning, then
design corresponding measurements to calculate the correlation
between features. However, in practical applications, features
may be generated dynamically and arrive one by one over time,
which we call streaming features. Most existing streaming feature
selection methods assume that all dynamically generated features
are the same type or assume we can know the feature type for
each new arriving feature on the fly, but this is unreasonable and
unrealistic. Therefore, this paper firstly studies a practical issue
of Unknown Type Streaming Feature Selection and proposes a
new method to handle it, named UT-SFS. Extensive experimental
results indicate the effectiveness of our new method. UT-SFS is
nonparametric and does not need to know the feature type before
learning, which aligns with practical application needs.

Index Terms—feature selection, streaming feature, unknown
feature type, maximal information coefficient

I. INTRODUCTION

Feature selection aims to select the smallest sized subset

of the original feature space that preserves the best salient

features required from the dataset [1]. With the explosive

growth of data volume and dimension, feature selection has

become a necessary data preprocessing technique that is

widely used in data mining, machine learning, and other fields

[2]. By removing noisy, irrelevant, and redundant features,

machine learning can gain significant benefits from feature

selection, such as better performance, less running time, and

better understandability [3], [4].

Traditional feature selection assumes that the entire feature

space can be fully presented to the learner before learning

[5]. To select an optimal feature subset, feature selection

algorithms tend to traverse the entire dataset multiple times.

However, in real-world applications, such as image analysis

[6] and Martian crater detection [7], not all features can be

acquired before learning. Features can be generated and arrive

one by one over time, while the number of samples remains

fixed, which we call streaming features [8]. For example,

because the high cost of conducting wet-lab experiments in

bioinformatics, acquiring the complete set of features for every

training instance is prohibitive, and it is impossible to wait for

a complete set of features [9]. Besides, for the product to be

processed in an industrial production line, it always requires

multiple steps by different devices which dynamically generate

different streaming features over time [10]. Online streaming

feature selection that deals with feature streams in an online

manner has attracted extensive attention recently [11].

Fig. 1: Illustration of the problem of unknown type streaming

feature selection. Streaming features are being generated and

arriving one by one as time goes on (from t1 to tm). Usually,

streaming feature selection methods need to measure the

correlation between a new arriving feature fi and the class

label C, and the correlation between fi and each feature f ′ in

the selected feature subset S. However, if we cannot know the

feature type of the next arriving feature, how can we measure

the correlations?

Feature selection methods can be broadly categorized as the

filter, wrapper, and embedded according to different selection

strategies [12]. Unlike traditional feature selection methods,

there are two main challenges for streaming feature selection:

(1) the entire feature space is unknown or even infinite, (2) and

we must decide whether to retain or discard the new arrival

feature on the fly [13]. Due to storage space limitations, once

a new arriving feature is discarded, we cannot use it again.

Therefore, most existing online streaming feature selection

methods apply a filter model to select the optimal streaming

features [14]. In other words, these methods always need

to design some measurements to calculate the association

between features.

Generally speaking, the feature type of the target dataset

can be categorized into categorical, numerical, or mixed.

Existing streaming feature selection methods either design for

single feature type or provide two versions of algorithms for

both categorical and numerical features, respectively [11]. For
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instance, based on penalized likelihood ratio, mutual informa-

tion, and classical rough set theory, α-investing [15], GFSSF

[16], and OS-NRRSARA-SA [17] are designed for categorical

features respectively. In terms of neighborhood rough set

theory, K-OFSD [18] and OFS-A3M [19] are proposed for

numerical features only. Besides, based on statistical tests,

information theory, and Fisher’s Z-test, OSFS [8], SAOLA

[20], SFS-FI [13], OSSFS-DD [21] provide two versions

of algorithms for both categorical and numerical features

respectively. For mixed feature space, fuzzy rough set-based

methods [22], [23] or hybrid metrics based methods [24], [25]

were proposed. All these methods mentioned above implicitly

assume that we can know the attribute type of each feature

before learning. However, it is unreasonable and unrealistic to

know all the attribute types for the infinite streaming features

in practical applications. As shown in Fig. 1, suppose at each

timestamp t, the new arriving streaming feature is ft. Filter

model streaming feature selection methods usually use specific

measurements to calculate the correlation between features.

However, if we cannot know the feature type of the next

arriving feature, how can we measure the correlations and

decide whether to retain or discard this streaming feature?

Motivated by this, this paper firstly studies a practical issue

of online feature selection for the unknown type streaming

features.

Specifically, we firstly pay attention to the issue of unknown

type streaming feature selection and give a formal definition

of it. Based on information theory, we model the streaming

feature selection issue as a minimax problem and propose two

metrics to determine whether the new arriving feature should

be selected. Then we propose a new online feature selection

method for unknown type streaming features, named UT-SFS.

The main contributions of this paper are as follows:

• We first present the exciting and practical issue of un-

known type streaming feature selection and model it as

a minimax problem.

• In terms of MIC which can measure the correlation for

unknown type features, we derive a new metric MICGain

that can be used to determine whether a new streaming

feature should be selected. To speed up the efficiency of

online feature selection, we present the metric MICCor

that can directly discard new arriving features with low

correlation.

• We propose a new unknown type streaming feature se-

lection method UT-SFS based on these two new metrics.

UT-SFS is nonparametric and does not need to know the

feature type of each streaming feature in advance, which

is in line with practical application needs.

• Extensive experiments conducted on nineteen real-world

datasets and compared with four state-of-the-art tradi-

tional mixed feature selection algorithms and five online

streaming feature selection approaches indicate the effec-

tiveness of UT-SFS.

The rest of this article is organized as follows. Section

II describes related work. Section III presents the formal

definition of the problem, the relevant theoretical knowledge

of MIC, and a new method for unknown type streaming

feature selection. Section IV gives the experimental analysis

and Section V gives a brief conclusion.

II. RELATED WORK

Feature selection has been studied for many years and a

large number of excellent algorithms have been proposed

[5]. According to different data generation types, we can

divide feature selection into two categories: traditional feature

selection for static data and online feature selection for stream

data [2].

A. Traditional Feature Selection Methods

According to the feature type of a dataset, feature selection

methods can be divided into categorical, numerical, and mixed.

Most traditional filter model feature selection algorithms are

designed for a single feature type, i.e., categorical or numeri-

cal.

In practical applications, features may be gathered in mixed

types. Therefore, some traditional mixed feature selection

algorithms are proposed to deal with mixed feature space.

Specifically, Zhang et al. [24] constructed a new information

entropy measurement method based on fuzzy rough set theory

for the mixed feature selection problem and proposed a new

filter-wrapper model feature selection algorithm according

to this measurement criterion. Yuan et al. [22] proposed

the FRUAR algorithm for the feature selection problem of

unsupervised mixed data. Yuan et al. [23] solved the feature

interaction problem in the feature selection of unsupervised

imbalanced mixed data and proposed a measure of uncertainty

based on fuzzy complementary entropy, named EUIAR. For

mixed feature type datasets, mixed feature selection methods

use different metrics to decrease the information loss in

the feature space. However, these methods require complete

knowledge of the feature space before learning.

B. Online Streaming Feature Selection Methods

For some real-world applications, features may exist in a

streaming model, and we cannot know the whole feature space

before learning [6], [7], [9]. Therefore, many online feature

selection methods have been proposed to solve the issue of

streaming feature selection [11].

Specifically, Zhou et al. [15] proposed the Alpha-investing

algorithm, which does not require a global model. However,

Alpha-investing requires prior knowledge of the feature space

structure to control the process of candidate feature selection

heuristically. Wu et al. [8] proposed an online streaming

feature selection framework, which includes two algorithms:

OSFS and Fast-OSFS. Yu et al. [20] proposed the SAOLA

method for high-dimensional data by using a pairwise compar-

ison method based on mutual information theory. Rahmaninia

et al. [26] used a streaming method to evaluate the correlation

and redundancy of features based on mutual information

theory and proposed two online feature selection algorithms,

named OSFSMI and OSFOMI-k. Zhou et al. [13] proposed
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a streaming feature selection algorithm SFS-FI considering

the interaction between features, and the number of selected

features increased due to the consideration of the interaction

ability between features.

Most existing streaming feature selection methods are de-

signed for a single feature type or provide two versions of

algorithms for both categorical and numerical features, respec-

tively. However, besides the number of streaming features in

practical applications, their feature type may also be unknown

in advance. Therefore, this paper focuses on online streaming

feature selection with unknown feature types.

III. THE PROPOSED METHOD

This section describes the formal definition of the problem

and the specific implementation of the proposed method. We

summarize some symbols used in this paper in Table I.

TABLE I: Summary on Mathematical Notations

Notations Definition
D Target dataset
F Feature space
C Class label
| · | |S|: the size of set S
xi ith sample

fj jth feature
U Sample space: {x1, x2, ..., xn}
St The selected feature subset after time stamp t
I(·; ·) I(f;C): denote the mutual information between f and C
MI(·, ·, ·) MI(D, k, l): denote the mutual information divided

according to the integers (k, l) on the two-dimensional
variable dataset D.

A. Problem Definition

Suppose F is the conditional feature space of the target

dataset D, the class label is C, and the sample space is

U = {x1, x2, ..., xn}, where xi is the ith sample. For stream-

ing feature selection, we cannot known the exact number of

|F | in advance (e.g. |F | → ∞). At timestamp t, the new

arriving streaming feature is ft (ft ∈ F ), and we do not

know the attribute type of ft. Meanwhile, we must decide

whether to retain or discard the new arrival feature on the

fly, and the selected feature subset after timestamp t is St.

Streaming feature selection aims to maximize the information

of St at each timestamp while making the size of |St| as small

as possible.

Mutual information can measure the amount of information

shared between St and C by measuring their dependency level.

Therefore, in terms of information theory, online streaming

feature selection can be formalized as:

min|St|max{I(St;C)} s.t. |St| > 0 (1)

Similar to traditional feature selection methods, two main

issues for streaming feature selection can be distinguished:

feature measurement and search strategy [27]. This first one

is to define an appropriate measure function to calculate the

correlation for each new arriving feature. The second issue is

to develop a search strategy that can decide whether retain

(a) (b)

Fig. 2: Taking a parabola as an example, a schematic diagram

of calculating MIC. (a) shows that for each pair (k, l), the

MIC algorithm finds the k-by-l grid with the highest mutual

information. (b) shows the maximum mutual information

matrix M(D) composed of the highest mutual information

value obtained by each pair (k, l).

or discard each streaming feature. There are many measure

functions, such as Pearson Correlation Coefficient (PCC) [28],

Spearman’s Rank Correlation Coefficient (SPCC) [29] and

Mutual Information (MI) [30], etc. However, most existing

feature measure functions must know the feature type before

calculation. Therefore, first of all, we need a measure function

to calculate the correlation between unknown type streaming

features.

B. Measure Function for Unknown Type Features

MIC has been proved to be an effective measure of the

dependence of two variables and can capture a wide range

of both functional and unfunctional associations [31]. As

shown in Fig.2, the x-axis and y-axis axes are divided dy-

namically in the calculation of the MIC. Therefore, MIC

can calculate mutual information for both numerical and

categorical data, making it adaptable to various applications.

Specifically, given a two-dimensional variable dataset D =
{(x1, y1), (x2, y2), ..., (xn, yn)}. The integers (k, l) can be any

pair. The calculation of the MIC(D) is as follows:

MIC(D) = max{M(D)k,l} (2)

M(D)k,l =
maxMI(D, k, l)

logmin(k, l)
(3)

where MI(D, k, l) denotes the mutual information value di-

vided according to the integers (k, l) on the two-dimensional

variable dataset D. The size of k and l when the party mutual

information is the maximum value can be obtained by the

exhaustive method. k × l ≤ B(n), B is a function of the

sample size n expressed as B(n) = n0.6.

MIC can measure the correlation between two variables of

any type. A higher MIC value indicates a strong correlation

between variables, and conversely, a lower MIC value implies

a weak correlation between variables.
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C. Seach Strategy for Streaming Features

Unlike traditional feature selection methods that actively

search for optimal features, streaming feature selection can

only passively receive streaming features and decide whether

to retain or discard these features. At each timestamp, the

ultimate goal of unknown type streaming feature selection is

to maximize MIC(St;C).
Metric MICGain: Let S = [f1, f2, ..., fN ] be an N

dimensional feature vector and C is the class label. MIC

measures the amount of information shared between S and

C by measuring their degree of correlation. Denote the joint

distribution densities of S and C and their marginal distribu-

tions by P (S,C), P (S), and P (C), respectively. The MIC

between features and class label can be defined as follows:

MIC(S;C) = MIC(f1, f2, ..., fN ;C)

=

∫
P (S,C)log

P (S,C)

P (S)P (C)
dSdC

(4)

Although mutual information measurement [32] has good

theoretical performance, accurate estimation of mutual infor-

mation is impossible. Because to compute (4), the estimation

of P (S,C) is unavoidable, which is an NP-hard problem.

Suppose at timestamp t, the selected feature subset is St.

It is impossible to calculate the information between a feature

set St and a class label C directly [31]. Therefore, a more

commonly used approach is to approximate it. To propose a

new approximation, we formulate the unknown type streaming

feature selection as:

max{ST
t QtSt} (5)

where Qt is a symmetric information matrix constructed from

the mutual information terms in as:

Qt =

⎡
⎢⎢⎣

MIC(f1;C) ... −β
2MIC(f1; fN )

−β
2MIC(f1; f2) ... −β

2MIC(f2; fN )
... ... ...

−β
2MIC(f1; fN ) ... MIC(fN ;C)

⎤
⎥⎥⎦ (6)

where St = [s1, ..., sN ] is the selected feature vector, si ∈
{0, 1}, and β is a trade-off parameter.

At timestamp t+1, suppose the new arriving feature is ft+1,

and we add ft+1 into the candidate feature subset. That is, the

selected feature subset is St+1 = [St, 1]. If

ST
t+1Qt+1St+1 > ST

t QtSt (7)

then, ft+1 can be retained. Otherwise, we should remove ft+1

from St+1. Therefore, the condition for judging whether ft+1

should be selected is

ST
t+1Qt+1St+1 − ST

t QtSt > 0. (8)

In our proposed metric, the variable β is set to reciprocal

of the number of selected features. Therefore, we define the

metric MICGain at timestamp t as follows:

MICGain(ft, St−1) = MIC(ft;C)− 1

|St−1|
∑

fi∈St−1

MIC(fi; ft)

(9)

The value of MICGain determines the importance of newly

arrived feature ft to the currently selected subset St−1 at

timestamp t. If MICGain is greater than 0, the newly arrived

feature is positive for the complete information of the selected

subset; otherwise, the value of MICGain is less than 0.

Metric MICCor: For streaming feature selection, the speed

of the algorithm is critical. Because MIC needs to divide the

variables into multiple grids, the time complexity of MIC is

a bit high. Besides, in practical applications, there are always

many irrelevant or low correlation features. Therefore, to speed

up the online streaming feature selection, we propose a new

metric MICCor to discard these irrelevant and low correlation

features directly.

MICCor(S,C) =
1

|S|
∑
fi∈S

MIC(fi;C) (10)

MICCor is the mean correlation of each features in the

currently selected feature subset. In other words, MICCor

aims to filter out low correlation features and maximize the

correlation of the selected subset

max{MICCor(St, C)}. (11)

For a new arriving feature ft, if MIC(ft;C) is samller than

MICCor(St−1, C), then it can be discarded directly.

Therefore, to maximize the correlation of the selected

feature subset, we can discard the low correlation streaming

features safely and directly in terms of MICCor.

D. The Proposed Algorithm

To sum up, in terms of (9) and (10), we propose a new

online streaming feature selection algorithm for unknown type

streaming features as Algorithm 1.

More specifically, if a new feature ft arrives at timestamp

t, Steps 5-8 calculates the correlation values between ft
and C, then compares MIC(ft;C) to MeanS , and selects

the features with high correlation for the further evalua-

tion processes. Steps 9-12 decide whether the newly arrived

feature ft is important for the candidate feature subset. If

MICGain(ft, S) > 0, which mean the new feature ft can

increase the information of selected feature subset, we add ft
into subset S. With this new online streaming feature selection

algorithm, we can select features with high correlation and

high significance while ignoring the feature type of each

streaming feature. Besides, it is worth mentioning that our

algorithm does not need to set any parameters in advance.

E. Time Complexity

Here is an estimation of the time complexity of the al-

gorithm UT-SFS. Let m and n be the numbers of features

and samples for the target dataset, respectively. Because the

MIC calculation uses a dynamic programming algorithm and
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Algorithm 1 Unknown Type Streaming Feature Selection

Input:
F : the condition feature set;
C: the class attributes;

Output:
S: the selected feature set;

1: Initialization:S = {};
2: MICCor(S,C):the mean correlation of features in S, initialized

to 0;
3: Repeat
4: Get a new arriving feature ft at time stamp t;
5: IF MIC(ft;C) ≤ MICCor(S,C)
6: Discard feature ft;
7: Go to Step 13;
8: End IF
9: IF MICGain(ft, S) > 0

10: S = S ∪ {ft};
11: End IF
12: Until no more features are available;
13: Output selected features contained in S.

the time complexity is difficult to determine. Therefore, we

assume that the time complexity of MIC is constant O(Ω).
At time stamp t, suppose that the number of selected features

is |St|. The time complexity of steps 5-8 is O(Ω) and steps

9-12 is O(m ∗ |S| ∗Ω). In sum, the worst time complexity of

UT-SFS is O(m2Ω) when we select all the streaming features.

However, there are always many low correlation features for

real-world datasets, and it is impossible for all features to

increase the information of the selected feature subset. Thus,

the time complexity of UT-SFS will be much smaller than

O(m2Ω).

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: This section applies the proposed online

streaming feature selection method (UT-SFS) and competing

algorithms on nineteen real-world datasets. The details of

these datasets are shown in Table II. Since the extremely

long running time of the traditional mixed feature selection

methods on high-dimensional datasets, the first five small

datasets (German, Heart, Australian, Flags, Dermatology) are

used to compare UT-SFS with four traditional mixed feature

selection methods.

2) Evaluation Metrics: We use three base classifiers, KNN

(k = 3), SVM (with the linear kernel), and CART in MATLAB,

to evaluate selected subsets of features in our experiments.

We perform a 5-fold cross-validation on each dataset. Feature

selection is to train on 4/5 of the data samples and test on the

remaining 1/5 of the samples. All competing algorithms use

the same training and test sets. For each dataset, the order of

stream features is random. We ran each dataset ten times and

recorded the average prediction accuracy, running time, and

the mean number of features selected on each classifier.

To verify whether the average prediction accuracy of UT-

SFS and its competitors on different classifiers is significantly

different, we performed the Friedman test at 95% significance

level under the null hypothesis [33]. If the null hypothesis is

TABLE II: Real-world Datasets

Data Set instances Features Classes Feature Type
German 1000 20 2 mixed
Heart 303 13 2 mixed

Australian 690 14 2 mixed
FLags 358 29 7 mixed

Dermatology 358 34 6 real
Arrarrhythmia 452 279 16 mixed
LYMPHOMA 62 4026 3 Real

SRBCT 63 2308 4 Real
DLBCL 77 6285 2 Real

CAR 174 9182 11 Real
OVARIAN 253 15154 2 Real

LEU 72 7129 2 Real
PROSTATE 102 6033 2 Real
ARCENE 200 10000 2 Real
LUNG2 203 3312 5 Real
LUNG 181 12533 2 Real
SYLVA 216 14394 2 mixed

GISETTE 7000 5000 2 Integer
DEXTER 600 20000 2 Integer

rejected, there is a significant difference in the performance

of UT-SFS and its competitors. When the null hypothesis of

the Friedman test was rejected, we proceeded to the Nemenyi

test as a post-hoc test [33].

3) Computational Device: All experimental results are con-

ducted on a PC with AMD 5800X, 3.8 GHz CPU, and 16 GB

memory.

B. UT-SFS vs. Traditional Mixed Feature Selection Methods

In this section, we compare UT-SFS with four state-of-the-

art traditional mixed feature selection methods including ε-

approximate reduct [24], IFSM [25], EUIAR [23], and FRUAR

[22]. All algorithms are implemented in MATLAB. Since the

extremely long running time of these four algorithms on high-

dimensional datasets, we only conduct the experiments on the

first five small datasets as shown in Table II. The parameters

involved in the comparison algorithms use the default values

mentioned in the papers.

Tables III-VII summarize the predictive accuracy on dif-

ferent classifiers, the running time, and the mean number of

selected features of these competing algorithms. The p-values

of Friedman test on KNN, SVM, CART, running time and

the mean number of selected features are 0.221e-05, 0.366e-

05, 0.0038, 0.113e-09 and 0.0271 respectively. Thus, there is

a significant difference between UT-SFS and the other four

competing algorithms on predictive accuracy, running time,

and the mean number of selected features. According to the

Nemenyi test, the value of CD is 2.7294.

TABLE III: Predictive Accuracy Using KNN as the Classifier

Data Set IFSM ε-approximate EUIAR FRUAR UT-SFS
German 0.6436 0.6981 0.613 0.5083 0.7009

Heart 0.7519 0.747 0.5478 0.5341 0.7241
Australian 0.7625 0.8308 0.4449 0.6194 0.8287

FLags 0.4098 0.3726 0.3742 0.3516 0.5649
Dermatology 0.8411 0.9632 0.3617 0.3475 0.9466

AVG. 0.6818 0.7222 0.4683 0.4722 0.753
AVG. RANKS 2.4 2 4 4.8 1.8

From Tables III-VII, we can observe that:

654



TABLE IV: Predictive Accuracy Using SVM as the Classifier

Data Set IFSM ε-approximate EUIAR FRUAR UT-SFS
German 0.7 0.7344 0.6996 0.3897 0.7035

Heart 0.7837 0.8107 0.7056 0.4822 0.7563
Australian 0.7897 0.8551 0.4449 0.8191 0.8551

FLags 0.4005 0.3711 0.3366 0.2892 0.302
Dermatology 0.8651 0.9595 0.4539 0.2978 0.9407

AVG. 0.7078 0.7462 0.5281 0.4556 0.7115
AVG. RANKS 2.6 1.3 4 4.6 2.5

TABLE V: Predictive Accuracy Using CART as the Classifier

Data Set IFSM ε-approximate EUIAR FRUAR UT-SFS
German 0.6277 0.6854 0.6922 0.5794 0.7046

Heart 0.747 0.7848 0.6974 0.6004 0.6974
Australian 0.761 0.8475 0.4464 0.7129 0.832

FLags 0.5007 0.4484 0.339 0.4346 0.5428
Dermatology 0.8612 0.9316 0.4419 0.8084 0.9111

AVG. 0.6995 0.7395 0.5234 0.6271 0.7376
AVG. RANKS 2.8 1.8 4.1 4.4 1.9

TABLE VI: Running time(seconds)

Data Set IFSM ε-approximate EUIAR FRUAR UT-SFS
German 0.1102 2.7083 7.2998 342.2607 0.2638

Heart 0.0041 0.0574 0.1413 1.9774 0.1096
Australian 0.0179 0.6145 1.4561 105.0164 0.7406

FLags 0.0127 0.1685 1.8246 3.6457 0.0122
Dermatology 0.0422 0.5662 3.4394 21.4266 0.0747

AVG. 0.03742 0.823 2.8322 94.8654 0.2402
AVG. RANKS 1.2 2.6 4 5 2.2

TABLE VII: The mean number of selected features

Data Set IFSM ε-approximate EUIAR FRUAR UT-SFS
German 9.04 11.58 3 16.2 2

Heart 4.46 6 3 11.66 5.22
Australian 6.62 6 3 12.76 7

FLags 7.88 9.28 3 6.86 1
Dermatology 8.2 17.96 3 13.66 20.52

AVG. 7.24 10.164 3 12.228 7.148
AVG. RANKS 2.8 3.8 1.4 4.2 2.8

• UT-SFS vs. IFSM: UT-SFS gets higher average predictive

accuracy and lower average ranks than IFSM in cases

of KNN, SVM, and CART. IFSM is faster than UT-

SFS in running time and selects almost the same average

number of features. IFSM is a neighborhood rough set-

based incremental feature selection method to handle

the dynamics of an object set that involves the change

of a single object and multiple objects. Since the time

complexity of the rough set model is square to the number

of instances, IFSM is not capable of handling large

datasets. Besides, IFSM needs to know the corresponding

feature types before learning and can only handle static

datasets.

• UT-SFS vs. ε-approximate: There is no significant differ-

ence between UT-SFS and ε-approximate on predictive

accuracy. The predictive accuracy of ε-approximate is

slightly better than that of UT-SFS in cases of SVM and

CART but worse in the case of KNN. ε-approximate is

a supervised mixed feature selection algorithm based on

fuzzy rough sets. ε-approximate can define corresponding

fuzzy relationships for different features, which requires

knowing the feature types before learning. Meanwhile,

the time complexity of the ε-approximate is very high

and unsuitable for processing high-dimensional datasets.

• UT-SFS vs. EUIAR: UT-SFS performs better than EU-

IAR on predictive accuracy in cases of these three

classifiers. Meanwhile, UT-SFS is faster than EUIAR in

running time. EUIAR is an unsupervised mixed feature

selection algorithm based on fuzzy rough sets and selects

the fewest features that may lead to the loss of some criti-

cal information. Besides, EUIAR requires two thresholds

to be given before feature selection to control the radius

and the number of selected features. On the contrary, it

is challenging to specify parameter values for streaming

feature selection before learning.

• UT-SFS vs. FRUAR: FRUAR performs the worst on pre-

dictive accuracy among all these competing algorithms.

Meanwhile, there is a significant difference between UT-

SFS and FRUAR in the case of KNN. FRUAR uses fuzzy

rough sets to define the importance of individual features.

The time complexity and space complexity of fuzzy

rough sets based algorithms are very high. Therefore,

the running time of FRUAR is much higher than other

comparison algorithms.

In sum, UT-SFS is competing or better on predictive accu-

racy than these traditional mixed feature selection algorithms

while does not need to know the type of each feature. Besides,

UT-SFS is designed for high-dimensional datasets, while these

traditional mixed feature selection algorithms cannot handle it

due to exceptionally long running time.

C. UT-SFS vs. Online Streaming Feature Selection Methods

In this section, we compare UT-SFS with five state-of-the-

art online streaming feature selection algorithms including α-

investing [15], Fast-OSFS [8], SAOLA [20], OSFSMI [26],

and SFS-FI [13]. We conduct the experiments on fourteen

high-dimensional datasets as shown in Table II. Since most of

these datasets are numerical features, we randomly selected

50% of the features and discretized these features into ten

equal parts. Thus, all experimental datasets are mixed feature

types for our new method. Meanwhile, because these five

competing algorithms cannot handle mixed features, we use

their categorical version algorithms in experimental, and the

datasets are equidistantly discretized into two intervals. All

algorithms are implemented in MATLAB. For α-investing, the

parameters are set to the values used in [15]. The significance

level α was set to 0.01 for Fast-OSFS and SAOLA, and the

parameter value of SFS-FI was set to 0.05.

Fig. 3 summarizes the predictive accuracy on three differ-

ent classifiers of these competing algorithms. Tables VIII-

IX summarize the running time and the mean number of

selected features. The p-values of Friedman test on KNN,

SVM, CART, running time, and the mean number of selected

features are 0.5584e-05, 0.3863e-10, 0.0015, 0.662e-14, and

0.704e-07 respectively. Thus, there is a significant difference

between these competing algorithms on predictive accuracy,

running time and number of selected features. According to

the Nemenyi test, the value of CD is 2.015. Fig. 4 shows the

statistical test of these competing algorithms in cases of KNN,

SVM, and CART.
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(a) KNN (b) SVM (c) CART

Fig. 3: Predictive accuracy of these competing algorithms

(a) KNN (b) SVM (c) CART

Fig. 4: The statistical test graph of these competing algorithms

TABLE VIII: Running time(seconds)

Data Set α-investing Fast-OSFS SAOLA OSFSMI SFS-FI UT-SFS
Arrarrhythmia 0.0077 0.2624 0.0246 0.2613 0.1044 8.3131
LYMPHOMA 0.0651 2.3755 0.897 0.461 3.294 40.1677

SRBCT 0.0286 1.1187 0.2155 0.2059 4.3432 0.8469
DLBCL 0.1387 2.9935 0.2323 1.0585 1.2055 13.4415

CAR 0.5461 7.1761 6.3329 1.2339 241.2094 46.9425
OVARIXAN 1.3392 14.6532 0.9837 12.7006 13.8304 44.3455

LEU 0.195 3.4568 0.2511 0.7164 21.8869 16.0849
PROSTATE 0.1318 2.9869 0.172 0.6658 0.6187 6.9797
ARCENE 0.4637 5.4661 0.2295 124.8731 1.2078 54.5846
LUNG2 0.1436 3.2084 2.2243 0.4246 7.8362 132.6171
LUNG 1.0266 8.4292 1.7554 1.7922 3.4119 43.809
SYLVA 0.2746 132.0478 0.0735 3.4589 0.1433 114.0287

GISETTE 58.9935 386.4437 1.1407 778.7647 16.4794 849.6236
DEXTER 2.4291 8.7344 0.3374 2092.413 1.3195 20.5311

AVG. 4.6988 41.3823 1.0621 215.645 21.2065 99.4511
AVG. RANKS 1.5714 4.6429 1.9286 3.5 3.7857 5.5714

TABLE IX: The mean number of selected features

Data Set α-investing Fast-OSFS SAOLA OSFSMI SFS-FI UT-SFS
Arrarrhythmia 5.56 3 21.32 100.14 80.22 21.78
LYMPHOMA 6.04 2 166.52 17.08 240.64 319.46

SRBCT 6.62 2 56.4 9.98 664.98 20.8
DLBCL 11.24 2.06 60.7 25.12 51.52 142.54

CAR 24.16 2 308.06 9.4 6042.7 109.8
OVARIXAN 32.92 2.96 32.82 73.48 207.68 45.52

LEU 16 2 43.82 7.18 77.72 164.6
PROSTATE 10 2.14 22.74 8.3 21.42 47.96
ARCENE 10.08 3.02 27.08 2232.44 22.64 35.88
LUNG2 20.12 3 322.42 12.1 432.22 170.1
LUNG 34.38 3.2 283.38 9.22 52.78 96.46
SYLVA 37.48 14.44 9.64 95.72 2.64 16.9

GISETTE 297.98 10.14 20.58 1882.28 48.94 70.76
DEXTER 12.74 2.1 32.2 15024.46 22.24 87.7

AVG. 37.5229 3.8614 100.5486 1393.35 594.8814 96.4471
AVG. RANKS 2.9231 1.1538 4.0769 3.6923 4.3077 4.8462

From Figs. 3-4 and Tables VIII-IX, we can indicate that:

• UT-SFS vs. α-investing: According to the statistical test

results, UT-SFS performs significantly better than α-

investing on predictive accuracy in cases of KNN and

SVM. Besides, UT-SFS gets much high predictive accu-

racy than α-investing on most of these datasets by using

CART as the classifier. The running time of α-investing is

the shortest among these competing algorithms. However,

α-investing does not handle redundancy between features

and select few features on sparse datasets.

• UT-SFS vs. Fast-OSFS: There is a significant difference

in predictive accuracy between UT-SFS and Fast-OSFS in

cases of KNN, SVM, and CART. Fast-OSFS performs the

worst on predictive accuracy among all these competing

algorithms. On running time, Fast-OSFS is a little faster

than UT-SFS. Fast-OSFS select the fewest features that

may lead to the loss of important information and result

in lower prediction accuracy.

• UT-SFS vs. SAOLA: According to statistical tests, UT-

SFS and SAOLA have no significant difference in predic-

tive accuracy. UT-SFS gets higher predictive accuracy on

average and lowers average ranks than SAOLA. SAOLA

is faster than UT-SFS due to its pairwise comparison

method. Meanwhile, they select about the same number

of features on these datasets. Like UT-SFS, SAOLA also

uses mutual information to select features on the fly but

can only deal with single-type streaming features.

• UT-SFS vs. OSFSMI: UT-SFS performs significantly bet-

ter than OSFSMI on KNN. In cases of SVM and CART,

UT-SFS gets higher predictive accuracy on average and

lowers average ranks than OSFSMI. On running time,

OSFSMI is speedy on some datasets but spends the most

time on other datasets. OSFSMI selects the most features

on average among these competing algorithms. Thus,

the performance of OSFSMI varies widely on different

datasets, which indicates its poor adaptability.
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• UT-SFS vs. SFS-FI: UT-SFS performs significantly better

than SFS-FI on CART. In cases of KNN and SVM,

UT-SFS gets higher predictive accuracy on average than

SFS-FI. SFS-FI is faster than UT-SFS in running time.

Since SFS-FI considers feature interaction, it selects more

features on some datasets. Like UT-SFS, SFS-FI also uses

mutual information to select features but cannot handle

mixed features and unknown type features.

In sum, UT-SFS achieves the highest predictive accuracy

and lowest ranks among these competing algorithms on these

datasets. Besides, since UT-SFS is nonparametric and does

not need to know the feature type of each streaming feature

in advance, it is better in line with practical application needs.

V. CONCLUSION

In this paper, we propose a novel online streaming fea-

ture selection method to address the issue of unknown type

streaming features, which is more in line with practical appli-

cations. We model the issue of unknown type streaming feature

selection as a minimax problem. In terms of MIC, which

can measure the correlation between any feature, we derive

two new metrics that aim to select informative and compact

features. Extensive experiments demonstrate the effectiveness

of our new proposed method compared to four traditional

mixed feature selection algorithms and five online streaming

feature selection methods. However, the time complexity of

UT-SFS is a bit high due to the calculation of MIC, and we

will focus on how to reduce the running time in future work.
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